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Tha problem of delermining the two-dimensional steady motion of a
viscous incompressible fluid which is injected radially over one small
arc of a circle and ejected radially over another arc is considered and
examples are given of both symmetrical and asymmetricai flows. The
mation is govacned by the Navier Stokes equations and the mathod of
solution is based on the use of truncated Fourier series representations
for the stream function and vorticity in the angular polar coordinate. The
Navier-Stokes equations are reduced to ordinary differential equations
in the radial variable and these sets of equations are solved using finite-
difference methods, but with the boundary vorticity calculated using
global integral conditions rather than local finite-difference approxima-
tions. One of the objects of the investigation is to relate this method to
a previous study which did not use integral conditions and also to
a recent study which uses an integro-differential method which is
different in concept but which also uses integral conditions. A brief
review of previous work on the problem is given. Comparisons of
present and previous results are excelient.  © 1993 Academic Press. Inc.

1. INTRODUCTION

A recent paper [1] has described a method for deter-
mining numerical solutions of the Navier—Stokes equations
using integral representations and applied it to the cal-
culation of several internal flow problems. The integral
representations come from the classical theorems of viscous
fluid motion expressed in suitable forms. Thus the velocity
field is obtained from the vorticity ficld by means of an
intcgral which cmbodics the Biot-Savart law, to which must
he added boundary infeprals which give the contributions
rom the boundary conditions for the velocily. A similar but
somcwhal more comphicated formula can be obtained for
the vorticity in terms of an integral over the field, together
with boundary integrals which involve the boundary vor-
ticity and the total pressure head. The solution is therefore
implicit in the sense that the wanted functions, namely the
vorticity and velocily components which appear on the left-
hand sides of the equations, are contained in the integrals
on the right-hand sides, together with their boundary condi-
tions. An iterative procedure is therefore necessary (o obtain

0021-9991/91 §5.00
Copyright £ 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

the solution; this is a general feature of any method of
solving the nonlinear Navier-Stokes equations, however,
and the method proposed is to some extent a numerically
implemented version of the classical analysis in which the
solution of the Navier-Stokes equations is reduced to
intcgral representations.

One of the features of the method is that boundary values
of the vorticity which are generally unknown on solid bound-
aries can be deduced by evaluating integrals involving the
vorticity and velocity vectors throughout the computational
field. In other words, the boundary vorticity is determined
by applying a constraint condition derived from the integral
representation, which may be called an integral condition.
The general nature of this condition was pointed out by
Quartapelle [2], who proposed it as a generalized form of
some particular cases previously treated by Dennis ¢t al.
[3-7], who used separation of variables techniques to
express the constraint conditions in a one-dimensional
form. Dennis ef al. used a series expansion method (some-
times called the method of series truncation, ¢f. Van Dyke
[8,91) to reduce the governing partial differential equa-
tions to ordinary differential equations in the case of steady
flow, or time-dependent partial differential equations for
unsteady flow. A brief review of some of the contributions
made by means of the series truncation method, many of
which use integral conditions, has been given by Anwar and
Dennis [10] and a recent paper by Dennis and Quartapelle
{11] has discusscd numerous applications of integral
conditions.

From time to time there has, of course, been interest in
the numerical use of integral representations by scveral
workers in solving Navier-Stokes problems. Payne [12]
used the Biot-Savart law to determine the velocity com-
ponents for time-dependent flow past an impulsively started
circular cylinder but solved the vorticity transport equation
using finite-differences and calculated the boundary vor-
ticity on the cylinder locally from the transverse velocity
component near the cylinder. Mills [13] used integral for-
mulations for the velocity components and the vorticity
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based on an application of a Green’s function method. As
examples he solved the same internal flow problems as
Wang and Wu [1], ie, flow inside a circle with a step
boundary tangential velocity component and flow into and
out of a circle with prescribed inlet-outlet velocities. Mills
considered a somewhat more general case in which the flow
was allowed to enter and exit at arbitrary locations, whereas
Wang and Wu restricted themselves to the case of symmetri-
cal flow about a diameter. The methods used by Mills for
evaluating the integrais are quite different from those of
Wang and Wu, who used fundamental solution expansions
appropriate to the circular region, ie, Fourier-series
expansions in terms of the polar coordinates centred at the
centre of the circle.

The present paper is devoted to a study of the inflow—
outflow problem within the circular boundary. As noted by
Wang and Wu, much less work has been done on flow inter-
nal to a circular boundary than on flow external to one. The
problem of flow inside a circle with a step boundary tangen-
tial velocity was first considered by Kuwahara and Imai
[14]. The first attempt at the inflow—outflow probem was
by Rayleigh [15] who considered only slow motion in
which a symmetrical flow was formed by injection of fluid
into the circle along a radius over an infinitesimally small
arc, with a corresponding outflow at the other extremity of
the diameter. The basis of his analysis was Stokes flow
(Reynolds number =0) in which the convective terms are
neglected so that the Navier—Stokes equations reduce to the
biharmonic equation; for this problem the integral represen-
tations give the exact solution without any iterative proce-
dures. The case in which the convective terms are not zero
was investigated by Dennis [16]. The fluid was injected
symmetrically over an arc of length 2« (Fig. 1) and flows out
over a symmetrically placed arc. Solutions were obtained in
the cases a==r/180 (1°) and a=rx/30 (6°) for scveral
Reynolds numbers R=ala/v. Wang and Wu have also
considered the case o« = 6° by their method although it is not
clear exactly what their Reynolds number Re represents. We
shall return to this point later when comparisons are made.
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FIG. 1. Symmetrical inflow-outflow problem.
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The problem of symmetrical flow in Fig. 1 was analyzed
by Mills in a more general asymmetrical form in which the
inflow and outflow can take place over several arcs of
arbitrary lengths subject only to the condition of conserva-
tion of mass. The arcs can be of arbitrary orientation. A
typical case is shown in Fig, 2. In the present paper we have
extended the series truncation method used by Dennis [ 16]
to cover this case by generalizing the half-range Fourier sine
serics expansion used in the case of the problem of Fig. 1 to
the full-range series of sines and cosines needed for a case
such as Fig. 2. We also use integral constraints to calcuiate
the surface vorticity, whereas Dennis [16] used the usual
local finite-difference approximations. The method is there-
fore in between that of Dennis and the method of Wang and
Wu, who also use the same integral constraints, but utilize
a quite different integro-differential method of determining
the vorticity and the velocity components. Wang and Wu
also make use of Chebyshev integration methods for
evaluating the necessary integrals when the Reynolds
number is high. We have found it appropriate to use a
specialized integration technique for evaluating the integral
constraints in the present method. It is also interesting to
note that the integral constraints are virtually the same as
those applicable to solving the Navier-Stokes equations for
flow through a loosely coiled tube (Dennis and Ng [17]).

In the following sections we describe the series formula-
tion and its numericat solution subject to the integral con-
straints. The results of calculations are presented, mainly for
the symmetrical case where comparison can be made with
previous calculations of Dennis and of Wang and Wu. Com-
parisons with both sets of resuits are good (assuming our
interpretation of Wang and Wu's Reynelds number Re is
correct) and they indicate that the present method forms an
effective bridge between the two techniques. The method is

FIG. 2. Typical asymmetrical inflow—outflow problem.
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quite efficient and accurate and the specialized technique of
evaluating the integral constraints works well. One calcula-
tion of asymmetrical flow for a case considered by Mills is
carried out and the comparison is satisfactory.

2. BASIC EQUATIONS

We shall consider the formulation for the general case of
asymmetrical flow, although two specific cases are con-
sidered numericaily, namely the case of symmetrical flow
shown in Fig. I and a typical asymmetrical flow shown in
Fig. 2. All quantities are assumed to be dimensionless. We
follow the method of Mills and use the radius @ of the cirele
and a typical velocity U with which to make the variables
dimensionless, where Uae is half the flow across a typical arc
CD (Fig.2). The dimensionless radial and transverse
velocity components (v,,v,) are given in terms of the
dimensionless stream function by

13y
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and the other dependent variable is the dimensionless scalar
vorticity £ defined by

(2)

From Eqs. (1} and (2) and from the Navier-Stokes momen-
tum equations, the two governing equations for i and { are
well known to be

Vi =, (3)
Rydpol ool
2p UYL WL
Vs r (66‘ or 6r 66‘)’ (4)
where
37 10 1 92
e I B
v _ar2+rar+r2 08

The Reynolds number in (4) is defined by

R="Uaz/v. (3
This is not quite the same, apparently, as the one used by
Wang and Wu, We have used a dimensionless scaling for the
inlet or outlet normal velocity component so that the
dimensionless flow across a given arc is independent of its
length. This preserves continuity of flow in a case such as
Fig. 2. The case of Fig. 2 can be identified with Fig. 1 by
taking e=¢' =0, 2’ =0, § = n (Fig. 2 actually shows f = n),
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U=U". The flow is especially simple in that case, being
symmetrical about the axis y =0.

In the first analysis of the problem to be given, Rayleigh
considered the case of Fig. | corresponding to R=0. In all
cases of R=0 (Stokes flow) there is an exact solution in
terms of Fourier series, Thus for small enough values of
R, a series method of solution in the form of Fourier
expansions

Yir, ) =1F(r)+ § {F,(r)cos nf + f,(r) sin nd}

n=1

(6)

Lr, 0)=1G{r)+ i {G,(r)cosnf+ g, (r}sinnB} (7)

n=1

can be constructed. This method was used by Dennis [16]
in the case of the symmetrical probiem of Fig. 1, in which
only the terms f,(r) and g,{r) in (6) and (7) are not identi-
cally zero. Wang and Wu used a series of the form (7) for the
vorticity, but used Fourier series for the individual velocity
components (z,, vy) in place of (6). The series were used to
evaluate integrals arising in their integral-relation method
of approach. The present approach uses the same method of
reduction of (3) and (4) to ordinary differential equations in
fr), F(r), g,(r), G,(r) used by Dennis in the simpler case
of Fig. 1, but employs integral conditions to calculate the
boundary vorticity rather than the local finite-difference
approximations used in Ref. [16], in some sense providing
a bridging method between these methods and that of Wang
and Wu.

The boundary conditions for the problem of Fig. 1 are
thatatr=1, -

= 6/a for 0g8<a;

=1 for a<l<n—o (8a)

W= (n—0)/x for n—a<B<m;
oy/or=0 for 0<O<n {8b)

For the problem of Fig. 2 the corresponding conditions are
thatatr=1

W=(0—a')e for o —&'<Og<a’ +4,

=1 for a'+e<O<f—g (9a)

y=(f—0)e for f—e<8<B+e

y=-—1 for f+e<O<2n+a’ —¢;
d/or="0 for 0<6<2n (9b)

The solution of the problem with the conditions of Egs. (8)
requires only the terms involving sines in Eqs. (6) and (7)
while the solution subject to Eq. (9) requires all the terms,
including the cosines. In both cases the boundary vorticity
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is calculated using integral conditions deduced from Eq. (3)
with Eqs. (8) and (9). These conditions are given, together
with the mathematical formulation, in the next section.

3. FORMULATION IN TERMS
OF FOURIER SERIES

On substitution of the series (6) and (7) into Egs. (3) and
{4) we obtain, following the usual methods of Fourier
analysis, sets of ordinary differential equations governing
the Fourier coefficients. If we consider first Eg. (3) we
obtain

Fi4+r ' Fo=G,, (10)
where the prime denotes differentiation with respect to r,
It follows that if Fy(0) is finite,

rFo=mn{r), (11}
where
n(r)= | ¢Gol(&) (12)
and then that
. )
Ry =Folt) - [ 2 (13)
For n 0 we have the sets of equations
Fr4r 'Fi—r70’F =G, (14a)
it —r i, =g, (14b)

together with boundary conditions which will be stated
later.

The equations governing the functions appearing in the
series (7) for { are similarly obtained from (4). It is found
that Gy(r) satisfies

Go+r 'Gy=r"1a'(r), (15)

where

G(r)=R }: m(fme_Fm gm)

m=1

(16)

If Gy(0) is finite, then

rGy=a(r) (17)
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and, further,

Go(r)=Gol(1) - | (18)

For the functions G,(r) and g,(r) when rn#£0 we have,
respectively, the equations

G +r=\G,—r= %G, = 4,(r), (19a)

gn+r gL —r g, = p(r), (19b)

where the functions on the right-hand sides are defined
respectively by

R o
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In Eqs. (20) and (21), sgn(m — n) denotes the sign of m —n
with sgn(0)=0.

Equations (14) and (19) form sets of second-order
ordinary differential equations and each requires two
boundary conditions. It is assumed that at r =( the stream
function and vorticity must be finite and unique (single-
valued). If we multiply both sides of either (6) or (7) by
cos nf? or sin nf and integrate with respect to 8 around an
infinitesimally small circle centred at the origin, it follows
that

F0)=g,(0)=0, F(0)=G,0)=0

(n=1,2,3,..) (22)
Conditions for Fy(0) and G4{0) cannot be found in this way
but when n =0 we need only know Fy(1}in (13) and Gy(1)
in (18) to determine Fy(r) and Gg(r), assuming that the
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R=10, a=6"

DENNIS, NG, AND NGUYEN

R=20, a=68"

FIG. 3. Streamlines for the symmetrical inflow~outflow problem for « = 6° with 2=, N=280; (a) R=2.5; (b) R=5; (c) R=10; (d) R=20.

5. RESULTS

The main object of this study is to show that satisfactory
results can be obtained in the problem considered by using
the series truncation formulation in conjunction with
integral conditions of global type. These conditions are used
to calculate the boundary vorticity, thereby avoiding the use
of the usual local approximations when finite-difference
methods are used. To this end we have computed again
some of the results presented by Dennis [16], namely the
symmetrical flow of Fig. 1 for the case o« = 6°, R=12.5, 5, 10,
20. The streamlines for the most accurate results computed
are shown in Figs. 3a—d in these four cases, respectively. The
most accurate results used 2=, N =80, but solutions
were also obtained for other grid sizes and values of N (the

maximum number of terms). Actually, N=80 is far in.

excess of the number of terms needed to obtain the graphi-
cal accuracy displayed in Fig. 3. As far as grid sizes are
concerned, a comparison of the results for R =20 for the
two grid sizes = 35, 7 may be made by means of Fig. 4
which shows streamlines for R =20, i = %, N = 80.

For detailed comparison purposes we have displayed in
Fig. 5 the results obtained by Dennis [16] for R=0, 2, 5, 10,

using & = 5, N = 40. Figures 5c,d are seen to be in extremely
good comparison with Figs. 3b, ¢, respectively. It is more
difficult to compare with the results given by Wang and Wu
because they have not identified precisely their Reynolds
number Re. However, they have based the non-dimen-
sionalization of the inlet normal velocity on a dimensionless
radial component,

v,= —ln—a<f<nta), v,=1({—a<bl<a),
Y1
m
T
T
/——!ﬂ__—-—
</,u1\
fﬁﬁ_—jﬂé
ﬁﬂr_";’,—_ﬁ

FIG. 4. Streamlines for the symmetrical inflow—outflow problem for
€ =6° h=3, N=80, R=20.
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STREAMLINES R0, 026"

FIG. 5. Streamilines for the symmetrical inflow—outflow problem computed by Dennis [12}fora=6° A=, N=40: (a) R=0;(b} R=2;(c) R=5,

(d) R=10,

so their Reynolds number is probably Re = Ua/v compared
with our Reynolds number of Eg. (5). We have used the
same¢ Reynolds number as Dennis [16] (note that the
inlet—outlet velocity of Dennis [16], Fig. 1 should be shown
as qu, = t 1 rather than v, = +1). With this understanding,
Re = R/e = 30R/xn for the present example, so the Reynolds
numbers of Wang and Wu (who also consider a=6°)
should be approximately 10 times ours. This seems to be
borne out in Fig. 6, where the streamlines for Wang and
Wu's solution at Re =0, 20, 50, 100 are given (taken from
the paper cited}. All four parts agree extremely well with the
corresponding parts of Fig. 5 and parts ¢ and d are in good
agreement with parts b and ¢, respectively, of Fig. 3. There
is, therefore, extremely good mutual comparison between
all three sets of results. This indicates that all methods of
approach are viable. The computer times for calculating the
present solutions are quite modest. In fact it is probably
quite comparable to solve the sets of Eqgs. (10), (14), {15),
and (19) by numerical methods in the manner indicated
with the solution procedure of Wang and Wu, who evaluate

numerically the integrals which define the velocity com-
ponents and vorticity in their approach. Both methods
employ iterative techniques and, for the higher values of R,
both methods employ some form of relaxation procedure of
the type (29) in the iterative procedure.

In the basic problem considered by Rayleigh (for R=0
only) the value @ =0 was taken, which corresponds to a
limiting case in which fluid is injected and removed over a
vanishingly small arc with a correspondingly large velocity.
There are no other published results for this case of & — 0
and it is interesting to see what the effect of this reduction of
o has on the results. In Fig. 7 we show some streamlines for
R=25, 5 10 in the Rayleigh case x=0, obtained using
h= 35, N =40. Compared with the « = 6° case the flow tends
to be more displaced in the downstream region for the com-
parable Reynolds number and the recirculating region,
when it appears, is generally more rapid. Both of these
effects may be expected with the more confined injection of
the fluid.

Finally, we have considered the Reynolds numbers
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Re. 100

FIG. 6. Streamlines for the symmetrical inflow—outflow problem com-
puted by Wang and Wu (reproduced, by permission of the publisher, from
Ref. [1, copyright © AIAA 19857]) for « =6°: (a) Re=0; (b) Re =20; (c)
Re = 50; (d) Re = 100.

R =25 and 5 in one case in which the flow is asymmetrical,
simply to test the method and compare the results with
previous computations. The parameters for these cases
(Fig. 2) are

These are cases considered by Mills [13] to illustrate his

DENNIS, NG, AND NGUYEN

L

R=10, a=0

FIG. 7. Streamlines for the symmetrical inflow—outflow problem for
a=0,h=g, N=40:(a) R=25,(b) R=35; (c) R=10.

integral relation method. Our computed streamlines are
shown in Fig. 8. The corresponding streamlines obtained by
Mills at his R, =2.5 {which seems to be the same as our R
in Eq. (5)) are shown in Fig. 9a. They show only one region
of separation rather than the two found in our solution.
However, Fig. 9b shows Mills results for R=35 and our
resuits seem to be much nearer to this diagram and certainly
of the same character. It is difficult to say which are the most
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R=25

FIG. 8. Strcamlines for the asymmetrical inflow—outflow problem with &' ==/, f=n, e=¢"=xf32: (a) R=25;(b) R=5.

accurate, although it must be pointed out that the results of
Mills were computed with a radial grid of only k= %.

In conclusion, we have presented here a method which
lies in between the purely finite-difference method, with
calculation of boundary vorticity localty, and the integral
relation method of Wang and Wu. The method uses the
same type of integral conditions as those employed by
Wang and Wu, but the general method of computation uses
numerical solution of the governing differential equations

Y =2

¥ =0
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b 1.0

rather than evaluation of solutions in integral form. The
results obtained are quite comparable in the trial cases
considered. It seems, therefore, that both methods are
worth consideration as alternatives to a method in which
local calculation of the boundary vorticity is replaced by
conditions of global type. The method used by Mills [13]
is again different and it seems also to be worthy of further
consideration. Further details of the present investigation
are to be found in the Ph.D. thesis of M. Ng [19].

J =0

FIG. 9. Streamlines for the asymmetrical inflow—outflow problem computed by Mills [13 ] with o' =#/8, f=#n,e=¢'=n/32: (a) R,=2.5.(b) R,=5.
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